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Abstract. The dynamical symmetry of the non-relativistic Kepler problem has attracted much
attention in the scientific literature. In the present paper, we show that the Runge–Lenz vector,
which accounts for the presence of this symmetry, has its physical origin in the generator
of Lorentz transformations for the relativistictwo-body problem. We reach this conclusion
by considering the relativistic two-body problem, for the electromagnetic as well as for the
gravitational interaction, in the 1/c2 approximation.

1. Introduction

It is well known that the dynamical symmetry of the non-relativistic Kepler problem
manifests itself through the so-called Runge–Lenz vector† which is a constant of the
motion—both in classical mechanics and in quantum mechanics. In classical mechanics
[2, 3], the Runge–Lenz vector confines planetary motion to conic sections fixed in space. In
quantum mechanics [4, 5], the corresponding vector operator is responsible for the accidental
degeneracy of the energy levels of the hydrogen atom with respect to the angular-momentum
quantum numberl.

The form of the Runge–Lenz vector associated with a particle moving in the ‘Coulomb
field’ κ/r is the following:

M = p× l
µ
+ κ
r
r (1)

whereµ is the mass of the particle,p its linear momentum, andl its angular momentum
r × p. This expression is the classical one; in quantum mechanics, the vectorp × l is
replaced by the Hermitian vector operator1

2(p× l− l× p).
The following Poisson-bracket relations involving the components of the angular-

momentum vector and the Runge–Lenz vector hold:

[li , lj ] =
∑
k

εijklk (2)

[li ,Mj ] =
∑
k

εijkMk (3)

[Mi,Mj ] = − 2

µ
H
∑
k

εijklk. (4)

† The history and the ‘pre-history’ of the Runge–Lenz vector has, in particular, been studied by Goldstein [1]. As
a result of his research, Goldstein concludes that it would seem most fitting to refer to the Runge–Lenz vector as
the Hermann–Bernoulli–Laplace vector.
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In these relations, [f, g] is the Poisson bracket between the dynamical functionsf andg.
H is the non-relativistic Hamiltonian

H = p2

2m
+ κ
r

(5)

and εijk is the Levi–Civita symbol. The fact thatM is a constant of the motion implies
the Poisson-bracket relation

[H,M ] = 0. (6)

The quantum-mechanical expressions that correspond to the relations (4) and (6) are
obtained by the substitution

[f, g] → 1

ih̄
(f̂ ĝ − ĝf̂ ) (7)

wheref̂ ĝ − ĝf̂ is the commutator between the operatorsf̂ and ĝ†.
For a fixed energy,E, relations (4) may be given a group-theoretical interpretation by

rewriting the last of them. ForE < 0, this is done by defining a vectorM ′ with the
components

M ′i =
√
− µ

2E
Mi. (8)

We get then

[M ′i ,M
′
j ] =

∑
k

εijklk. (9)

Thus,li andM ′j may be considered as generators of the four-dimensional orthogonal group.
For E > 0 we define instead

M ′′i =
√
µ

2E
Mi (10)

and get

[M ′′i ,M
′′
j ] = −

∑
k

εijklk. (11)

Here li andM ′′j may be considered as generators of the Lorentz group.
Finally, for E = 0, we encounter the generators of the group of rigid motions in the

three-dimensional Euclidean space.
The group-theoretical classification of the dynamical symmetry of the Kepler problem

was first clarified by Fock [7], Bargmann [8], and Hulthén and Klein [9]. A detailed review
is due to Bander and Itzykson [10].

We note that the above symmetry groups are different forE < 0, E > 0 and
E = 0. They are elegant mathematical constructs, by means of which the dynamics of
the Kepler problem may be described in a most useful and interesting way. However, so
far, the presence of the dynamical symmetry has not been tied to a generally accepted
physical invariance principle. Nor has it given rise to the discovery of new general
invariance principles. The description that has been developed is, accordingly, a purely
phenomenological one. Thus, it is relevant and important to ask the question,Does

† The relation (7) is generally valid when [f, g] may be written as a linear combination of Poisson brackets
between functions of which at least one is no more than quadratic in the components ofr or p. Otherwise, great
care must be exercised in setting up the correspondence between classical and quantum-mechanical relations. See,
for instance, [6].
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the Runge–Lenz vector have a deeper physical origin? We have been able to derive an
affirmative answer to this question.

What we shall show in what follows is, in fact, that it is possible to tie the dynamical
symmetry of the non-relativistic Kepler problem to the classical invariance principles of
special relativity‡. However, in order to do so, it is essential to realize that the non-
relativistic Kepler problem is the zero-order description of a relativistic two-body problem
rather than the zero-order description of a one-body problem. The massµ that appears in the
equations above is, accordingly, the reduced mass of a two-body problem. But whereas the
introduction of a reduced mass eliminates the centre-of-mass motion in the non-relativistic
description—and thus effectively reduces the problem to one of a single particle—this is
no longer the case in a proper relativistic description. Thus, it is absolutely necessary to
investigate the relativistictwo-body problem in order to discover the connection between
the dynamical symmetry of the non-relativistic Kepler problem and special relativity.

Now, there are two kinds of force that give rise to a potential of the formκ/r, namely
the electromagnetic force and the gravitational force. We shall base our discussion on
the former, but show at the end that the same conclusions are obtained by invoking the
gravitational force. We shall assume that the motion of the particles considered may be
described by classical mechanics, and also adopt a description in which retardation effects
are taken into account to second-order terms in 1/c. The restriction to second-order terms
is necessary to avoid including energy loss through radiation. Dissipation of energy due to
dipole radiation goes as 1/c3. A description that goes beyond terms of order 1/c2 must,
therefore, also include the degrees of freedom of the electromagnetic field. An important
exception occurs if the particles have the same charge-to-mass ratio. The dipole radiation
is then postponed to order 1/c5, and a particle dynamics exists to order 1/c4. We shall not
consider this special case in the present work.

The 1/c2 description was first set up by Darwin [12] in 1920. It is often referred to as
post-Newtonian mechanics. The 1/c4 order mechanics that may be set up for particles with
the same charge to mass ratio is similarly referred to as post-post-Newtonian mechanics
[13, 14].

The invariance group of the electromagneticN -body problem is the inhomogeneous
Lorentz group (the Poincaré group). It is well known that this group forces ten constants of
the motion upon a physical system; these are the generators of the infinitesimal operations
of the group. The total momentumP and the total energyH generate translations in space
and time, and go together to form a four-vector(P ,H/c). With the inhomogeneous Lorentz
group described as the semidirect product of a four-dimensional translation group and the
homogeneous Lorentz group,P andH go with the translation group. The generators for
the homogeneous Lorentz group are the total angular momentumL, generating rotations in
three-space, and a polar vectorK which generates homogeneous Lorentz transformations
without rotations. Together,L andK define an antisymmetric four-tensor(L, cK).

The Lagrangian of the electromagneticN -body problem in the 1/c2 approximation (the
Darwin Lagrangian) is reproduced in section 2. To make the presentation reasonably self-
contained, we also give the expressions for the Hamiltonian and the other constants of the
motion. It is the vectorK that is of primary interest in the present context.

In section 3, we specialize to the electromagnetic two-body problem and focus on the
centre-of-momentum system. By eliminating the centre of mass coordinates, an expression
is derived forK in terms of the relative coordinates. It is shown that this expression does,

‡ Some of the conclusions arrived at in the present paper were published in a preliminary form as a letter several
years ago [11].
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in fact, identify the Runge–Lenz vector. Having thus determined the physical origin of the
Runge–Lenz vector, we show that the Poisson-bracket relation (6) is a simple consequence
of the fact thatK is a constant of the motion.

In section 4, we consider the gravitational two-body problem and show that the Runge–
Lenz vector emerges in a similar way in this case. In section 5 we present our conclusions.

2. Post-Newtonian description of an electromagneticN -body system

The Darwin Lagrangian for a system ofN particles, with rest massesm1, m2, . . . , mN and
chargesq1, q2, . . . , qN , has the following form ([12], [15,§27], [16, §65]):

L = −
∑
i

mic
2+ 1

2

∑
i

miv
2
i +

1

8c2

∑
i

miv
4
i −

1

2

∑
i,j

′ qiqj
rij

+ 1

4c2

∑
i,j

′
qiqj

(
vi · vj
rij
+ (vi · rij )(vj · rij )

r3
ij

)
(12)

wherevi is the velocity of theith particle, with position vectorri , and

rij = ri − rj rij = |rij |. (13)

A prime on a summation symbol indicates that terms for which two indices become equal
are to be omitted in the corresponding double sum.

The momentum associated withri is

pi = ∂L
∂vi
=
(
∂L
∂vix

,
∂L
∂viy

,
∂L
∂viz

)
(14)

with vix, viy andviz denoting the Cartesian coordinates ofvi . We get

pi = mivi + miv
2
i

2c2
vi + 1

2c2

∑
j 6=i

qiqj

(
vj

rij
+ vj · rij

r3
ij

rij

)
. (15)

The Hamiltonian is constructed by the usual prescription

H =
∑
i

pi · vi − L (16)

and, to order 1/c2, becomes

H =
∑
i

mic
2+

∑
i

p2
i

2mi
− 1

c2

∑
i

p4
i

8m3
i

+ 1

2

∑
i,j

′ qiqj
rij

− 1

4c2

∑
i,j

′ qiqj
mimj

(
pi · pj
rij
+ (pi · rij )(pj · rij )

r3
ij

)
. (17)

For the total momentum of the system we have the usual expression

P =
∑
i

pi (18)

and similarly for the total angular momentum

L =
∑
i

ri × pi . (19)

Following Fock [15,§27] the analytical expression for the vectorK may be derived
from the variation of the Lagrangian as obtained by subjecting theN -particle system to
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an infinitesimal Lorentz transformation without rotation, followed by a transformation to
simultaneity in the new reference frame. The full transformation is generated by a function
of the formK ·w, with w denoting the relative velocity of the two frames. The expression
for K is

K = −tP +
∑
i

[
miri + 1

2c2

(
p2
i

mi
+
∑
j 6=i

qiqj

rij

)
ri

]
. (20)

By defining the energy associated with theith particle to be

Ei = mic2+ p2
i

2mi
+ 1

2

∑
j 6=i

qiqj

rij
(21)

and introducing the centre of inertia,RCI, by the relation

HRCI =
∑
i

Eiri (22)

the expression (20) takes on the form

K = H
c2
RCI − tP . (23)

The fact thatK is constant represents, then, the law of motion of the centre of inertia.
The vectorK depends explicitly on time, except in the centre-of-momentum system

which is the Lorentz frame for whichP = 0. In this particular reference system,K becomes
a time-independent constant of the motion.We shall now show that, for the electromagnetic
two-body problem, this constant of the motion identifies the Runge–Lenz vector.

3. The electromagnetic two-body problem in the centre-of-momentum system

In the case of only two particles, we shall replacer1 andr2 by the vectors

R = m1r1+m2r2

m1+m2
r = r1− r2 (24)

with R being the position vector of the centre of mass andr the position vector for the
relative motion. The corresponding momenta are

P = p1+ p2 p = m2p1−m1p2

m1+m2
. (25)

We also note the inverse relations

r1 = R+ m2

m1+m2
r r2 = R− m1

m1+m2
r (26)

and

p1 = p+ m1

m1+m2
P p2 = −p+ m2

m1+m2
P . (27)

Exploiting these relations, we obtain the following expression forK:

K = −tP + (m1+m2)R+ 1

c2

(
P 2

2(m1+m2)
+ p2

2µ
+ q1q2

r

)
R

− 1

2c2

m1−m2

m1+m2

(
p2

µ
+ q1q2

r

)
r + 1

c2

1

m1+m2
(p · P )r (28)
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whereµ is the reduced mass

µ = m1m2

m1+m2
. (29)

In the centre-of-momentum system,P = 0, we get

K = (m1+m2)R+ 1

c2

(
p2

2µ
+ q1q2

r

)
R− 1

2c2

m1−m2

m1+m2

(
p2

µ
+ q1q2

r

)
r. (30)

Similarly, the Hamiltonian becomes

H = (m1+m2)c
2+ p2

2µ
+ q1q2

r
− 1

8c2

(
1

m3
1

+ 1

m3
2

)
p4+ q1q2

2c2

1

m1m2

(
p2

r
+ (p · r)

2

r3

)
.

(31)

To order 1/c2 we have

1

c2
H = m1+m2+ 1

c2
H (32)

where

H = p2

2µ
+ q1q2

r
(33)

is the non-relativistic Hamiltonian. Hence, the expression (30) forK may be written

K = 1

c2
HR− 1

2c2

m1−m2

m1+m2

(
p2

µ
+ q1q2

r

)
r. (34)

We also note that equation (19) becomes

L = r × p. (35)

In the centre-of-momentum system,P is no longer a dynamical variable. The same
holds, therefore, for the corresponding position vectorR. The expressions (31) and (35)
for H andL, respectively, are already independent ofR, but the expression forK in (34)
is not.R must be eliminated from this expression in order forK to be a proper dynamical
function. The way to do this is to set up the equation of motion forR with P different
from zero, and then solve that equation in the limitP = 0.

ThatR is expressible as a function ofr andp whenP = 0 was already realized by
Darwin [12]. He referred to the centre of mass as thecentroid and determined its motion
in the particular caseq1 = −q2, for a bound quasi-elliptic orbital motion. Here, we shall
consider the general case.

With H being the Hamiltonian (17), Hamilton’s equation forR gives

dR

dt
=
[
∂H
∂P

]
P=0

. (36)

By exploiting the expressions of (27), we may instead write

dR

dt
=
[

m1

m1+m2

∂H
∂p1
+ m2

m1+m2

∂H
∂p2

]
p1=p
p2=−p

(37)

which becomes

dR

dt
= 1

2c2

m1−m2

(m1+m2)2

1

µ

[(
p2

µ
+ q1q2

r

)
p+ q1q2

r3
r(p · r)

]
. (38)

This equation could also have been obtained by differentiating equation (34) with respect
to time, while using that dK/dt = 0.
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To order 1/c2 we have that

1

c2
ṙ = 1

c2

p

µ

1

c2
ṗ = 1

c2

q1q2

r3
r (39)

whereṙ and ṗ mean dr/dt and dp/dt , as usual. Hence, equation (38) is equivalent to the
equation

dR

dt
= 1

2c2

m1−m2

(m1+m2)2

[
p2

µ
ṙ + q1q2

r
ṙ + ṗ(ṙ · r)

]
. (40)

We now note that
1

c2

d

dt
{(p · r)p} = 1

c2
[(p · r)ṗ+ (p · ṙ)p+ (ṗ · r)p]

= µ

c2

(
ṗ(ṙ · r)+ p

2

µ
ṙ + q1q2

r
ṙ

)
(41)

and this allows us to write
dR

dt
= 1

2c2

m1−m2

(m1+m2)2

1

µ

d

dt
{(p · r)p} (42)

from which we get

R = R0+ 1

2c2

m1−m2

(m1+m2)2

1

µ
(p · r)p (43)

whereR0 is an arbitrary vector. It defines the position of the centre of mass (the centroid)
at a time when(p · r)/c2 = 0. Each conic section possesses at least one such point, and
expression (43) offers, therefore, a well-defined correlation between the orbital motion and
the motion of the centre of mass for any electromagnetic two-body system. We need such
a correlation in order to set up a well-defined expression for the constant of the motion
defined byK.

Inserting expression (43) into expression (34) forK finally gives

K = 1

c2
HR0+ 1

2c2

m1−m2

m1+m2

1

µ
(p · r)p− 1

2c2

m1−m2

m1+m2

(
p2

µ
+ q1q2

r

)
r (44)

or

K = 1

c2
HR0− 1

2c2

m1−m2

m1+m2
M (45)

where

M =
(
p2

µ
+ q1q2

r

)
r − 1

µ
(p · r)p = p× l

µ
+ q1q2

r
r. (46)

HereM is the Runge–Lenz vector defined by equation (1), withκ = q1q2. We have thus
reached our goal of demonstrating that the form ofM is determined by the vectorK in
the centre-of-momentum system.

The fact thatK is a constant of the motion implies that the Poisson bracket between
H andK must vanish in the centre-of-momentum system, i.e.

[H,K] = 0. (47)

With K given by expression (45) andH/c2 by expression (32), we find that

[H,K] = − 1

2c2

m1−m2

m1+m2
[H,M ] = − 1

2c2

m1−m2

m1+m2
[H,M ] (48)
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whereH is the non-relativistic Hamiltonian (33). Relation (47) obviously implies that

[H,M ] = 0 (49)

i.e. the Runge–Lenz vector must commute with the non-relativistic Hamiltonian (33).
The Poisson bracket relation (49) is identical with the Poisson-bracket relation (6). So,

not only have we identified the physical origin of the Runge–Lenz vector, we have also
shown that the Poisson-bracket relation (6) is a consequence of the Poisson-bracket relation
(47). This relation reflects, in turn, the requirement that the dynamics must be in accordance
with the structure of the inhomogeneous Lorentz group. This is a strong requirement on
the form of a dynamics, as thoroughly discussed by Dirac [17]. Dirac refers, in fact, jointly
to H andK as the Hamiltonians, thus stressing that the forms ofH andK are strongly
coupled by the group requirements. So strong is this coupling that its implications are also
felt in the non-relativistic limit, namely through the requirement thatM must exist as a
constant of the motion in that limit.

4. The problem of two gravitating bodies

We shall now show that the Runge–Lenz vector emerges from theK-vector of the
gravitational two-body problem in a similar way as it does from theK-vector of the
electromagnetic two-body problem. The Lagrangian to order 1/c2 in this case is ([15,§81],
[16, §106], [18]):

L = 1

2
m1v

2
1 +

1

2
m2v

2
2 +

km1m2

r
+ 1

8c2

(
m1v

4
1 +m2v

4
2

)− k2m1m2(m1+m2)

2c2r2

+km1m2

2c2

(
3(v2

1 + v2
2)

r
− 7v1 · v2

r
− (v1 · r)(v2 · r)

r3

)
. (50)

The corresponding Hamiltonian is

H = p2
1

2m1
+ p2

2

2m2
− km1m2

r
− p4

1

8m3
1c

2
− p4

2

8m3
2c

2
+ k

2m1m2(m1+m2)

2c2r2

− 3k

2c2

(
m2

m1

p2
1

r
+ m1

m2

p2
2

r

)
+ k

2c2

(
7p1 · p2

r
+ (p1 · r)(p2 · r)

r3

)
(51)

and theK-vector becomes

K = −tP +m1r1+m2r2+ 1

2c2

(
p2

1

m1
− km1m2

r

)
r1+ 1

2c2

(
p2

2

m2
− km1m2

r

)
r2. (52)

Formally, theK-vector results from theK-vector of the electromagnetic problem by
the substitutionq1q2 → −km1m2. The two Hamiltonians are, of course, not that simply
related. Yet, it turns out that the equation of motion for the centre of mass in the centre-
of-momentum system does result from equation (38) by the said substitution. Hence, the
expression (43) forR is unchanged, and the expression forK in the centre-of-momentum
system becomes similar to equation (45), the only difference being that the Runge–Lenz
vector now has the form

M = p× l
µ
− km1m2

r
r. (53)

Thus, the role played by the Runge–Lenz vector is the same whether one considers
electromagnetic or gravitational interactions.
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In connection with the expression (43) that we have derived for the centre of mass
motion, it is worth while noticing that puttingK = 0 in (34) gives

(m1+m2)R = 1

2c2

m1−m2

m1+m2

(
p2

µ
+ q1q2

r

)
r. (54)

This expression forR does, of course, satisfy the equation of motion forR, but the
correlation with the orbital motion is not sufficiently precise to define an origin of coordinates
independent of the state of motion. The expression was first derived by Fock ([15,§81],
[19]), in his discussion of the gravitational two-body problem.

5. Discussion

With the above analysis, we have tied the Runge–Lenz vector to the generator,K, of
infinitesimal Lorentz transformations of a two-body system. The Poisson-bracket relation
(6) also follows from the analysis.

As to the Poisson-bracket relations (4), they are reminiscent of the Poisson-bracket
relations

[Ki,Kj ] = − 1

c2

∑
k

εijkLk (55)

which are imposed on the components of the vectorK by the structure of the Lorentz group.
They can, however, not be derived from these relations within our 1/c2 order description,
sinceM appears in expression (45) asM/c2. The results of our analysis do, however,
make relations (4) qualitatively understandable, when we invoke the following arguments.

We may write

[Mi,Mj ] =
∑
k

εijkAk (56)

whereA is an axial vector. Our analysis has shown that [Mi,H ] must vanish, so [Ai,H ]
must also vanish.A is therefore a constant of the motion in the non-relativistic dynamics.
This allows us to conclude [20, 21], thatA may be written on the form

A = σ l (57)

whereσ is a constant of the motion. Its dimension must be energy divided by mass. The
simple choice

σ = −2H

µ
(58)

reproduces relation (4).
This concludes our discussion of the Runge–Lenz vector and its connection with the

generator of infinitesimal Lorents transformations. We emphasize that the discussion has
been entirely classical. The Runge–Lenz vector is, however, also a constant of the motion in
non-relativistic, spin-free quantum mechanics. As mentioned in the introduction, this follows
by substituting commutators for Poisson brackets according to equation (7). However, the
quantum-mechanical Kepler problem is incomplete without the introduction of the spin.
With spin included, the proper point of departure is the Dirac equation and the so-called
Johnson–Lippmann operator [22] which accounts for the dynamical symmetry in the Dirac–
Kepler problem. An analysis along similar lines as those followed in the present paper—
including the crucial transition to the two-body problem—would be extremely difficult.
It is, however, worthwhile noting that the non-relativistic limit of the Johnson–Lippmann
operator equals−σ ·M whereσ is the Pauli spin vector andM is the Runge–Lenz vector
[23, 24].
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